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Abstract. Due to the work of many authors in the last decades, given

an algebraic orbifold (smooth proper Deligne–Mumford stack with trivial

generic stabilizer), one can construct its orbifold Chow ring and orbifold

Grothendieck ring, and relate them by the orbifold Chern character map,

generalizing the fundamental work of Chen–Ruan on orbifold cohomology.

In this paper, we extend this theory naturally to higher Chow groups and

higher algebraic K-theory, mainly following the work of Jarvis–Kaufmann–

Kimura and Edidin–Jarvis–Kimura.
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1770 Lie Fu and Manh Toan Nguyen

1 Introduction

In their seminal papers [12] and [13], Chen and Ruan constructed the orbifold coho-

mology theory for complex orbifolds. More precisely, given an orbifold X, there is a

rationally graded, associative and super-commutative algebra whose underlying vec-

tor space is the cohomology of the inertia orbifold of X. The highly non-trivial multi-

plicative structure of the orbifold cohomology ring is defined using orbifold Gromov–

Witten theory, in particular, the construction of the virtual fundamental class of some

moduli stack of the so-called ghost stable maps, which are stable maps (from orb-

ifoldal curves) of degree 0, thus invisible if the orbifold X is a manifold.

This striking new theory attracted a lot of interests and was revisited repeatedly by

various mathematicians. In this paper, we restrict our attention to algebraic orbifolds,

namely, smooth Deligne–Mumford stacks with trivial generic stabilizer and projec-

tive coarse moduli space. On one hand, Fantechi–Göttsche [22] and Lehn–Sorger

[43] gave a simplification of the construction of the orbifold cohomology in the case

of global quotients of projective complex manifolds by finite groups ; on the other

hand, Abramovich–Graber–Vistoli [1] [2], based on [3], provided a general algebro-

geometric construction (i.e. in the language of stacks) of the orbifold cohomology

ring and actually the orbifold Chow ring 1.

A common feature of the aforementioned works is to construct some obstruction

vector bundles by using some moduli space of curves or that of stable maps from

curves. In contrast, for global quotients of projective complex manifolds by finite

groups, Jarvis–Kaufmann–Kimura [36] furnished a purely combinatorial definition of

the class of the obstruction vector bundle in the Grothendieck group without appea-

ling to moduli spaces of curves, and hence gave a much more elementary construction

of the orbifold theories (cohomology ring, Chow ring, Grothendieck ring, topological

K-theory etc.). Their construction involves only the fixed loci of the group elements

and various normal bundles between them (together with the naturally endowed ac-

tions). In a subsequent work, Edidin–Jarvis–Kimura [20] extended the construction

in [36] to all smooth Deligne–Mumford stacks which are quotients of projective com-

plex manifolds by linear algebraic groups, using the so-called logarithmic trace and

twisted pull-backs (see §5). Let us briefly summarize their results. In the follow-

ing, we use exclusively rational coefficients ; CH∗G(−) is the equivariant Chow group

of Totaro [56] and Edidin–Graham [18], and KG
0

(−) := K0 ([−/G]) is the equivariant

Grothendieck group, namely, the Grothendieck group of the category of G-equivariant

vector bundles. Here is the main result of [36] and [20].

Theorem 1.1 (Jarvis–Kaufmann–Kimura [36] and Edidin–Jarvis–Kimura [20]). Let

X be a smooth projective complex variety endowed with an action of a linear algebraic

group G. Denote by IG(X) := {(g, x) | gx = x} the inertia variety, endowed with a

natural G-action given by h.(g, x) = (hgh−1, hx) for all h ∈ G and (g, x) ∈ IG(X).

Assume that the action has finite stabilizer, i.e. IG(X) → X is a finite morphism. Let

1The work [1] takes care of the general Gromov–Witten theory of smooth Deligne–Mumford stacks,

in particular, their quantum cohomology / Chow ring. The case of orbifold cohomology / Chow ring is

obtained by simply taking the degree-zero part.
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X := [X/G] denote the quotient Deligne–Mumford stack and IX := [IG(X)/G] its

inertia stack. Then

(i) On the equivariant Chow group CH∗G (IG(X)), there is an orbifold product ⋆cT ,

which makes it into a commutative and associative graded ring.

(ii) The graded ring CH∗G (IG(X)), endowed with the orbifold product, is independent

of the choice of the presentation of the stack X and coincides with the product

defined in Abramovich–Graber–Vistoli [1]. Hence it is called the orbifold Chow

ring of X and denoted by CH∗orb(X).

(iii) On the equivariant Grothendieck group KG
0

(IG(X)) = K0(IX), there is an orb-

ifold product ⋆ET , which makes it into a commutative and associative ring.

(iv) The ring KG
0

(IG(X)) endowed with the orbifold product is independent of the

choice of the presentation of the stack X and is called the (full) orbifold

Grothendieck ring of X, denoted by Korb
0

(X).

(v) There is a natural ring homomorphism with respect to the above orbifold prod-

ucts, called the orbifold Chern character map,

ch : KG
0 (IG(X)) −→ CH∗G (IG(X)) .

It induces an isomorphism

ch : KG
0 (IG(X))∧

≃
−→ CH∗G(IG(X)),

where the left-hand side is the completion with respect to the augmentation ideal

of the representation ring of G.

The work [36] treated the situation where G is a finite group. In that case, CH∗G (IG(X))

and KG
0

(IG(X))∧ are simply the G-invariant parts of the larger spaces CH∗ (IG(X)) and

K0 (IG(X)) respectively, where the orbifold products are already defined, giving rise to

the so-called stringy Chow / Grothendieck rings.

1.1 Orbifold higher Chow ring and higher K-theory

The first main purpose of this article is to extend the work of Jarvis–Kaufmann–

Kimura [36] and Edidin–Jarvis–Kimura [20] for Bloch’s higher Chow groups [10]

(or equivalently, the motivic cohomology [59]) and for Quillen’s higher algebraic K-

theory [47], by proving the following analogue of Theorem 1.1. Similarly as before,

CH∗G(−, •) is the rational equivariant higher Chow group of Edidin–Graham [18] (see

§3.3), and KG
• (−) := K• ([−/G]) is the rational equivariant algebraic K-theory (see

§3.2), namely, Quillen’s K-theory [47] of the exact category of G-equivariant vector

bundles.
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1772 Lie Fu and Manh Toan Nguyen

Theorem 1.2. Assumptions and notations are as in Theorem 1.1.

(i) On the equivariant higher Chow group CH∗G (IG(X), •), there is an orbifold prod-

uct ⋆cT , which makes it into a (graded) commutative and associative bigraded

ring.

(ii) The bigraded ring CH∗G (IG(X), •), endowed with the orbifold product, is inde-

pendent of the choice of the presentation of the stack X.

(iii) On the equivariant algebraic K-theory KG
• (IG(X)), there is an orbifold product

⋆ET , which makes it into a (graded) commutative and associative graded ring.

(iv) The graded ring KG
• (IG(X)) endowed with the orbifold product is independent of

the choice of the presentation of the stack X.

(v) There is a natural graded ring homomorphism with respect to the orbifold prod-

ucts, called the orbifold (higher) Chern character map,

ch : KG
• (IG(X)) −→ CH∗G (IG(X), •) .

It induces an isomorphism

ch : KG
• (IG(X))∧

≃
−→ CH∗G(IG(X), •),

where the left-hand side is the completion with respect to the augmentation ideal

of the representation ring of G.

Here the ring CH∗G (IG(X), •) (resp. KG
• (IG(X))) is called the orbifold higher Chow

ring (resp. orbifold K-theory) of the stack X and denoted by CH∗orb(X, •) (resp.

Korb
• (X)). As in [36], when G is finite, the orbifold products on CH∗G (IG(X), •) and

KG
• (IG(X))∧ extend to the larger spaces CH∗ (IG(X), •) and K• (IG(X)) respectively,

giving rise to stringy motivic cohomology and stringy K-theory, see §4 for the details.

1.2 Orbifold motives

In the first author’s joint work with Zhiyu Tian and Charles Vial [26], for a global

quotient of a smooth projective variety by a finite group, its orbifold Chow motive

is constructed, following the strategy of [36], as a commutative algebra object in the

category of rational Chow motives CHMQ.

We construct here for any Deligne–Mumford stack X which is the global quotient of a

smooth projective variety by a linear algebraic group, an algebra object Morb(X) in the

category of mixed motives with rational coefficients DMQ. Precisely, it is the motive

of its inertia stack M(IX) together with an algebra structure given by the orbifold

product. See §5.3 for some details.
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1.3 Hyper-Kähler resolution conjectures

Inspired by the topological string theory, one of the most important motivations (pro-

posed by Ruan [50]) to introduce these orbifold theories of a Deligne–Mumford stack

is to relate it to the corresponding “ordinary” theories of the (crepant) resolutions

of the singular coarse moduli space. More precisely, we have the following series

of Hyper-Kähler Resolution Conjectures (HRC). Recall that a projective manifold is

called hyper-Kähler if it admits a holomorphic symplectic 2-form2.

Conjecture 1.3 (Hyper-Kähler Resolution Conjectures). Let X be a smooth alge-

braic orbifold, with coarse moduli space |X|. Suppose there is a crepant resolution

Y → |X| with Y being hyper-Kähler, then we have

(i) (Cohomological HRC [50]) an isomorphism of graded commutativeC-algebras :

H∗(Y,C) ≃ H∗orb(X,C).

(ii) (K-theoretic HRC [36]) an isomorphism of commutative C-algebras :

K0(Y)C ≃ Korb
0 (X)∧C.

(iii) (Chow-theoretic HRC [26]) an isomorphism of commutative graded C-

algebras :

CH∗(Y)C ≃ CH∗orb(X)C.

(iv) (Motivic HRC [26]) an isomorphism of commutative algebra objects in the cat-

egory of complex mixed motives DMC :

M(Y) ≃ Morb(X).

Note that in Conjecture 1.3, (ii) and (iii) are equivalent by the Chern character map

defined in [36] (see (v) of Theorem 1.1), and the motivic version (iv) implies the others

[26].

With orbifold higher Chow rings and orbifold higher algebraic K-theory being defined

in this paper (Theorem 1.2), we now propose to complete Conjecture 1.3 by including

the “higher” invariants in (ii) and (iii) :

Conjecture 1.4 (Hyper-Kähler Resolution Conjectures: strengthened). Hypothe-

ses and conclusions are as in Conjecture 1.3, except that (ii) and (iii) are respectively

replaced by

(ii)+ (K-theoretic HRC) an isomorphism of commutative graded C-algebras :

K•(Y)C ≃ Korb
• (X)∧C.

(iii)+ (Chow-theoretic HRC) an isomorphism of commutative bigraded C-algebras :

CH∗(Y, •)C ≃ CH∗orb(X, •)C.

2The manifolds thus defined should rather be called holomorphic symplectic, and hyper-Kähler varieties

(also known as irreducible holomorphic symplectic varieties) in the literature are the simply-connected

holomorphic symplectic varieties such that symplectic form is unique up to scalar, see [7], [35], [32] etc.

However, in this paper we will abuse slightly the language and call holomorphic symplectic varieties hyper-

Kähler.
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1774 Lie Fu and Manh Toan Nguyen

On one hand, by Theorem 1.2 on the orbifold (higher) Chern character map, (iii)+ is

equivalent to (ii)+ (Lemma 6.2) ; on the other hand, we will show in Proposition 6.3

that the implication (iv) =⇒ (iii)+ holds. As a consequence, we can improve the first

author’s previous joint works with Tian and Vial [26], [24] and [25] by including the

higher K-theory and higher Chow groups, thus confirming the (strengthened) hyper-

Kähler resolution conjecture in several interesting cases :

Theorem 1.5. Conjecture 1.4 holds in the following cases, where n ∈ N, A is an

abelian surface and S is a projective K3 surface.

(i) X = [An/Sn], Y = A[n] the n-th Hilbert scheme of points of A and the resolution

is the Hilbert–Chow morphism.

(ii) X = [An+1
0
/Sn+1], Y = Kn(A) the n-th generalized Kummer variety and the

resolution is the restriction of the Hilbert–Chow morphism, where An+1
0

denotes

the kernel of the summation map An+1 → A, endowed with the natural action of

Sn+1.

(iii) X = [S n/Sn], Y = S [n] the n-th Hilbert scheme of points of S and the resolution

is the Hilbert–Chow morphism.

(iv) X is a 2-dimensional algebraic orbifold with isolated stacky points and Y is the

minimal resolution of |X|.

The cohomological hyper-Kähler resolution conjecture was proved in the cases (i) and

(iii) by Fantechi–Göttsche [22] and Lehn–Sorger [43]. Conjecture 1.3 was proved in

the cases (i) and (ii) in [26], in the case (iii) in [24] and in the case (iv) in [25].

1.4 Notation and Convention

We denote Schk for the category of separated noetherian schemes which are quasi-

projective over a field k. The full subcategory of Schk consisting of smooth varieties

will be denoted by Smk. Chow groups and K-theory are with rational coefficients.

If X → Y is a smooth morphism in Schk, the relative tangent bundle will be denoted

by TX/Y . When Y = Spec(k), we write simply T X or TX .
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2 Preliminaries on K-theory and motivic cohomology

In this section, some fundamental results in algebraic K-theory and motivic cohomol-

ogy are collected for later use.

2.1 Algebraic K-theory

For any X ∈ Schk, let K(X) be the connected K-theory spectrum of the exact cate-

gory of vector bundles on X in the sense of Quillen [47]. This is homotopy equiv-

alent to the Thomason–Trobaugh’s connected K-theory spectrum of the complicial

bi-Waldhausen category of perfect complexes on X [55, Proposition 3.10]. We will

allow ourselves to identity these two constructions. The i-th K-group of X, denoted

by Ki(X), is by definition the i-th homotopy group of K(X). In particular, K0(X) is the

Grothendieck group of the category of vector bundles on X. We set

K•(X) :=
⊕

i

Ki(X).

The assignment X 7→ K(X) (and hence X 7→ K•(X)) is a contravariant functor on Schk

and a covariant functor on the category of quasi-projective schemes of finite type over

k with proper maps of finite Tor-dimension [55, 3.14 and 3.16.2 - 3.16.6]. The tensor

product of vector bundles over OX induces a pairing

⊗ : K(X) ∧ K(X)→ K(X)

which is commutative and associative up to “coherent homotopy”. This makes K•(X)

a graded commutative ring with unit [OX] ∈ K0(X). We will use the notation ’∪’ for

this product.

Proposition 2.1 (Projection formula [47, Proposition 2.10], [55, Proposition

3.17]). Suppose that X, Y ∈ Schk and f : X → Y is proper morphism of finite Tor-

dimension. The following diagram

K(Y) ∧ K(X)

K(X) ∧ K(X)

K(X) K(Y)

K(Y) ∧ K(Y)

f ∗∧1

⊗

f∗

⊗

1∧ f∗

is commutative up to canonically chosen homotopy.

In particular, for any x ∈ K•(X) and y ∈ K•(Y), we have

f∗(x ∪ f ∗y) = f∗x ∪ y (2.1)

in K•(Y).
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Recall that a morphism f : X → Y is called a local complete intersection (l.c.i) if f

can be written as the composition of a closed regular embedding i : X → P and a

smooth morphism p : P→ Y. The class of the relative tangent bundle of f is

N f := [i∗TP/Y] − [NX P] ∈ K0(X),

where NX P is the the normal bundle of X in P. N f is independent of the factorization.

Let

X′ Y′

X Y

f ′

g′ g

f

(2.2)

be a Cartesian square where f is a l.c.i morphism. Choose a factorization f = p ◦ i as

before, and form the Cartesian diagram

X′ P′ Y′

X P Y.

i′

g′

p′

g

i p

Then there is a canonical embedding

NX′P
′ → g′∗NX P

of vector bundles on X′ [27, §6.1]. The excess normal bundle of (2.2) is defined by

E := g′∗NX P/NX′P
′.

This definition is independent of the choice of the factorization [27, Proposition 6.6].

Let E∨ be its dual bundle.

Proposition 2.2 (Excess intersection formula [53, Théorème 3.1], [40, Theo-

rem 3.8]). Consider the Cartesian diagram (2.2) where all the schemes are quasi-

projective and f is l.c.i and projective . Then the diagram

K•(X
′) K•(Y

′)

K•(X) K•(Y)

f ′∗

λ−1(E∨ )∪g′∗

f∗

g∗

commutes, where λ−1E∨ is the Euler class
∑

i≥0(−1)i[∧iE∨] ∈ K0(X′). In other words,

for any x ∈ K•(X),

g∗ f∗x = f ′∗ (λ−1(E∨) ∪ g′∗x). (2.3)
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2.2 Motivic cohomology

Motivic cohomology is a cohomology theory for algebraic varieties which plays the

role of singular cohomology for topological spaces and includes the Chow ring of al-

gebraic cycles as a special case. Provisioned by Beilinson, Deligne and constructed by

Bloch, Friedlander–Suslin, Voevodsky, etc., this cohomology theory is a key ingredi-

ent in Voevodsky’s proof of the Milnor conjecture [61] and the motivic Bloch–Kato’s

conjecture [62]. Over smooth varieties, all of these constructions are known to be

equivalent [59]. We choose here Bloch’s definition of motivic cohomology via higher

Chow groups [10], which have an explicitly cycle-theoretical description.

Let∆r be the hyperplane in the affine spaceAr+1
k

defined by t0+. . .+tr = 1. A face of∆r

is a closed subscheme given by ti1 = . . . = ti j
= 0 for a subset {i1, . . . , i j} ⊂ {0, . . . , r}.

For any X ∈ Schk, let zp(X, r) be the free abelian group on the irreducible subvarieties

of codimension p in X × ∆r which meet all faces properly, i.e. in the maximal codi-

mension (if not empty). The assignment r 7→ zp(X, r) forms a simplicial abelian group

[10, Introduction]. The cycle complex zp(X, •) is defined to be the complex associated

to this simplical group.

Definition 2.3 (Bloch [10]). The n-th higher Chow group of algebraic cycles of

codimension-p, denoted by CHp(X, n), is the n-th homology group of the complex

zp(X, •), i.e.

CHp(X, n) := Hn(zp(X, •)).

It is straightforward to check that complex z∗(X, •) is covariant functorial (with a suit-

able shift in the grading) for proper morphisms and contravariant functorial for flat

morphisms.

Let f : X → Y be an arbitrary morphism in Smk. Let z
p

f
(Y, n) ⊂ zp(Y, n) be the

subgroup generated by the codimension p subvarieties Z ⊂ Y × ∆n, meeting the faces

properly, and such that the pull back X × Z intersects the graph of f properly. Then

z
p

f
(Y, •) is a chain complex. Using the so-called “technique of moving cycles”, it is

shown that the inclusion of complexes z
p

f
(Y, •) ⊂ zp(Y, •) is a quasi-isomorphism. The

pull-back by f is defined for algebraic cycles in z
p

f
(Y, •). This yields a well-defined

homomorphism

f ∗ : CHp(Y, n)→ CHp(X, n).

Moreover, the assignment X → CH∗(X, n) is a contravariant functor on the category of

smooth, quasi-projective k-schemes. For more details, see [10, Theorem 4.1] or [44].

The cycle complexes admit natural associative and commutative external products

∪X,Y : zp(X, •) ⊗ zq(Y, •)→ zp+q(X × Y, •)

in the derived category D−(Ab) of bounded below complexes of abelian groups. For

X smooth over k, the pull-back along the diagonal embedding δ : X → X × X induces

a natural intersection product in D−(Ab)

∪X := δ∗ ◦ ∪X,X : zp(X, •) ⊗ zq(X, •)→ zp+q(X, •).
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These products make
⊕

p
zp(X, •) an associative and commutative ring in the derived

category. In particular,
⊕

p,n
CHp(X, n) is a bigraded ring, where the fundamental

class [X] ∈ CH∗(X) is the identity element and the product is commutative with respect

to the p-grading and graded commutative with respect to the n-grading (i.e., if x ∈

CH∗(X,m) and y ∈ CH∗(Y, n), then x ∪ y = (−1)mny ∪ x), see [10, Corollary 5.7].

Remark 2.4. When n = 0, zp(X, 0) is the group zp(X) of codimension p cycles on X

and CHp(X, 0) is the quotient of zp(X) by killing cycles of the form [Z(0)] − [Z(1)],

where Z is a codimension p cycle on X × A1
k

meeting the fibre over i ∈ A1
k

properly

in Z(i) for i = 0, 1. Hence CHp(X, 0) is the usual Chow group CHp(X) defined by

Fulton [27, 1.6]. The restriction of the intersection product ’∪X’ to
⊕

p
CHp(X, 0) is

the usual intersection product on the Chow ring of X [44, Theorem 5.2 (c)]. Note that

higher Chow groups considered in loc.cit. are with rational coefficients, however the

proof works equally with integral coefficients.

Similar to algebraic K-theory, higher Chow groups satisfy the following properties.

Proposition 2.5 (Projection formula). For any proper map f : X → Y in Smk and

x ∈ CH∗(X, •), y ∈ CH∗(Y, •), we have

f∗(x ∪ f ∗y) = f∗x ∪ y. (2.4)

Proof. The proof [44, Theorem 5.2 (b)] works equally with integral coefficients. �

Proposition 2.6 (Excess intersection formula). Consider a Cartesian diagram

(2.2) where all varieties are smooth and g is projective. Then for any x ∈ CH∗(X, •),

g∗ f∗(x) = f ′∗

(

ctop(E) ∪ g′
∗
x
)

where ctop(E) ∈ CH∗(X′) is the top Chern class of the excess normal bundle E.

Proof. This formula is a reformulation of [15, Proposition 5.17] under the compari-

sion between motivic cohomology and higher Chow groups [59, Corollary 2] which is

compatible with pull-back, proper push-forward [46, Lecture 19] and preserves mul-

tiplications [39, Theorem 3.1]. �

When n = 0, we recover the projection formula and the excess intersection formula

for the usual Chow groups.

2.3 Riemann–Roch theorem

There are natural relations between K-theory and Chow theory (or other cohomology

theories) provided by characteristic classes. Relying on the work of Gillet [29], Bloch

defined in [10, Section 7] for any X ∈ Smk and any n, a higher Chern character map

chX
n : Kn(X)→

⊕

p

CHp(X, n) ⊗ Q (2.5)

which generalizes the usual Chern character [28].
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Theorem 2.7 ([10, Theorem 9.1], [44, §6]). For any X ∈ Smk the higher Chern

character maps (2.5) induce a multiplicative isomorphism

ch : K•(X) ⊗ Q
∼
−→

⊕

p,n

CHp(X, n) ⊗ Q. (2.6)

Remark 2.8. Friedlander–Walker [23, Theorem 1.10] showed that over a field of char-

acteristic 0, the isomorphism (2.6) can be realized by a map (the Segre map) of infinite

loop spaces.

Using exterior powers of vector bundles, Grayson constructed in [31] λ-operations on

K•(X) which satisfy the λ-ring identity [28, (1.1)]. As a result, algebraic K-theory

with rational coefficients splits into a direct sum of weight–graded pieces

Kp(X) ⊗ Q =
⊕

q

Kp(X)(q).

In [44], Levine constructed a morphism CHq(G, p) ⊗ Q → Kp(X)(q) and showed that

this is an isomorphism. He obtained therefore an isomorphism similar to (2.6) without

replying on the higher Chern character.

Higher Chern characters commute with pull-backs, but do not commute with push-

forwards. The lack of commutativity with taking push-forwards is corrected by the

Todd classes.

Theorem 2.9 (Grothendieck–Riemann–Roch [29, Theorem 4.1], [48, Corollary

6.3.2]). Let f : Y → X be a proper morphism between smooth schemes over k,

then the following diagram commutes

K•(Y) ⊗ Q K•(X) ⊗ Q

CH∗(Y, •) ⊗ Q CH∗(X, •) ⊗ Q

f∗

td(TY)ch td(T X)ch

f∗

where td(TY) ∈ CH∗(Y)⊗Q is the Todd class of the tangent bundle of Y and similarly

for td(T X).

3 Equivariant K-theory and motivic cohomology

We collect here some constructions and results in equivariant geometry.

3.1 Basic notions for group actions

Let G be an algebraic group over k. Let X be an algebraic variety over k equipped

with an action of G, that is, a morphism σ : G × X → X satisfying the usual axioms.

Define the inertia variety IG(X) by the following cartesian diagram:

IG(X)
π

//

��

X

∆

��

G × X
(σ,pr2)

// X × X

(3.1)
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Definition 3.1. Let the notation be as before. The action of G on X

• is called proper, if (σ, pr2) is proper;

• has finite stabilizers, if π is finite;

• is quasi-free, if π is quasi-finite.

Remark 3.2. If G is an affine algebraic group, then a proper action must have finite sta-

bilizers. If k is of characteristic zero, the quotient stack [X/G] is a Deligne–Mumford

stack if and only if G acts quasi-freely. By Keel–Mori [37, Corollary 1.2], a coarse

moduli space of the quotient stack [X/G] exists only if G acts on X with finite stabi-

lizers.

3.2 Equivariant K-theory

Algebraic K-theory has a direct generalization in the equivariant setting. For any al-

gebraic variety X endowed with an action of a group G, the category of G-equivariant

vector bundles on X is again exact in the sense of [47]. Quillen’s machinery in

loc.cit. produces a connected spectrum KG(X) which is called the equivariant alge-

braic K-theory of X [52]. The i-th equivariant K-group KG
i

(X) is by definition the i-th

homotopy group πi(K
G(X)) and we set

KG
• (X) :=

⊕

i

KG
i (X).

Similar to the non-equivariant case, the tensor product over OX makes KG
• (X) into

a associative and graded commutative ring with identity. In the case of points,

K0(G, Spec(k)) is the representation ring R(G) of G over k.

If f : X → Y is a morphism of G-schemes, the pull-back of equivariant vector bundles

defines a ring homomorphism

f ∗ : KG
• (Y)→ KG

• (X).

This makes KG
• a contravariant functor on the category of G-schemes. By pulling-back

from the spectrum of the base field, we see that KG
• (X) is a graded R(G)-algebra, and

f ∗ is a R(G)-algebra homomorphism.

If f : X → Y is a proper morphism between smooth G-schemes over k, there is a

push-forward map, given by the derived direct image map,

f∗ : KG
• (X)→ KG

• (Y),

which makes KG
• a covariant functor on the category of smooth G-schemes with proper

morphisms. On a smooth G-scheme, every G-coherent sheaf admits a finite resolution

by G-equivariant locally free sheaves [52, Corollary 5.8] so that the K-theory of G-

equivariant coherent sheaves is homotopy equivalent to the K-theory of G-equivariant

vector bundles. By the projection formula [54, 1.11], such f∗ is a R(G)-module homo-

morphism.
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If G acts freely on X, the quotient X → X/G is a principle G-bundle. The category

of G-equivariant coherent sheaves (resp. G-equivariant locally free sheaves) on X is

equivalent to the category of coherent sheaves (resp. locally free sheaves) on X/G.

This induces a natural isomorphism

KG
• (X) � K•(X/G).

Equivariant algebraic K-theory have all the formal properties of algebraic K theory

such as the projection formula ([54, 1.11] or [58, Proposition 6.5 and Remark 6.6])

and the equivariant excess intersection formula for finite l.c.i morphisms of schemes

satisfying resolution property [40, Theorem 3.8]. These properties will be used to

prove the associativity of the orbifold product for higher algebraic K-theory (Theorem

5.11) along the line of Theorem 4.7.

3.3 Equivariant higher Chow groups

Unlike algebraic K-theory, the generalization into the equivariant setting of the mo-

tivic cohomology is not the naive one. Roughly speaking, the reason is that there are

not enough equivariant cycles on the variety itself for many purposes (for instance, an

intersection theory). Fortunately, this problem has been resolved by Edidin–Graham

[18], based on ideas of Totaro on algebraic approximations of classifying spaces [56].

Definition 3.3. Let X be a quasi-projective variety together with a linearizable

action of an algebraic group G. For any n, p ∈ N, the equivariant higher Chow group

CH
p

G
(X, n) is defined as

CH
p

G
(X, n) := CHp ((X × U)/G, n)

where U is a Zariski open subset of some k-linear representation V of G such that

V − U has codimension at least p + 1 and G acts freely on U.

Using Bogomolov’s double filtration argument [18, Definition-Proposition 1] and ho-

motopy invariance of Bloch’s higher Chow groups on quasi-projective varieties [10,

Theorem 2.1], we can show easily that this definition is independent of the choice of

the pair (U,V). Unlike the ordinary case, for a given index n, the group CH
p

G
(X, n)

might be non-zero for infinitely many p.

Remark 3.4. The assumption on the linearizability of the action of G is necessary

to obtain a quasi-projective quotient (X × U)/G. This is not a very strict assump-

tion. Since we will work later with normal and projective schemes, any action of a

connected algebraic group G is linearizable (Sumihiro’s equivariant completion [51]).

Let P be one of the following properties of morphisms between schemes: proper, flat,

smooth, regular embedding, l.c.i. Then equivariant higher Chow groups have the same

functorialities as ordinary higher Chow groups for equivariant P morphisms. Indeed,

if f : X → Y is a morphism which satisfies one of these properties, so does the map

f × idU : X × U → Y × U. Since G acts freely on X × U and Y × U, the morphisms
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X×U → (X×U)/G and Y×U → (Y×U)/G are faithfully flat. Moreover, the diagram

X × U Y × U

(X × U)/G (Y × U)/G

f×id

f×id

is Cartesian. Hence by the flat descent [33], the induced morphism f × id : (X ×

U)/G → (Y × U)/G satisfies the same property P. In particular, the total equivariant

higher Chow group has a multiplicative structure and satisfies the projection formula.

If X → Y is a regular embedding of G-schemes over k, then the normal bundle N

is equipped with a natural action of G, and (N × U)/G is the normal bundle of (X ×

U)/G → (Y × U)/G. If E is the excess normal bundle of (2.2), then E is a G-vector

bundle on X′, and (E ×U)/G is the excess normal bundle of ((2.2)×U)/G. Hence the

excess intersection formula holds also for equivariant higher Chow groups.

When G acts freely on X, the projection X → X/G induces an isomorphism

CH
p

G
(X, n) � CHp(X/G, n).

If G acts on X with finite stabilizer, the quotient stack X := [X/G] is a Deligne–

Mumford stack. By the definition in [41], the Chow group CHi(X) is nothing else but

the equivariant Chow group CHi
G(X). More generally, we set CH∗(X, •) = CH∗G(X, •).

3.4 Equivariant Riemann–Roch

Define the equivariant higher Chern character map

chG,X
n : KG

n (X)→
∏

p≥0

CH
p

G
(X, n) ⊗ Q

whose p-th component chG,X
n (p) : KG

n (X)→ CH
p

G
(X, n) is the composition

KG
n (X)

π∗

−→ KG
n (X × U)

∼
−→ Kn((X × U)/G)

ch
(X×U)/G
n (p)
−−−−−−−−→ CHp((X × U)/G, n) ⊗ Q

where U is as in Definition 3.3, π∗ is the pull-back along the projection X×U → X and

ch
(X×U)/G
n (p) is the p-th component of the higher Chern character ch

(X×U)/G
n in (2.5).

By Bogomolov’s double filtration argument and the homotopy invariance of higher

Chow groups, this map is well-defined and independent of the choice of U. These

maps resemble to yield a morphism

chG,X : KG
• (X) =

⊕

n

KG
n (X)→

⊕

n

∏

p

CH
p

G
(X, n) ⊗ Q.

which is also called the equivariant higher Chern character. As direct consequences of

the corresponding properties in the non-equivariant setting (see Theorem 2.7 or [10]),

this map is a ring homomorphism and commutes with pull-backs. If G acts freely on

X, we can identify chG,X
n with chX/G

n .

Krishna generalized Theorem 2.9 to the equivariant setting:
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Theorem 3.5 (Equivariant Riemann–Roch [42, Theorem 1.4]). Let f : Y → X be

a proper equivariant morphism between smooth quasi-projective G-schemes over k,

then the following diagram commutes

KG
• (Y) ⊗ Q KG

• (X) ⊗ Q

CH∗G(Y, •) ⊗ Q CH∗G(X, •) ⊗ Q

f∗

tdG(TY)chG,Y tdG(T X)chG,X

f∗

where tdG(TY) ∈ CH∗G(Y) ⊗ Q is the equivariant Todd class of the tangent bundle TY

of Y.

To generalize Theorem 2.7, we need to recall the completion construction. Let IG ⊂

R(G) = KG
• (pt) be the augmentation ideal, that is, the kernel of dim : R(G) → Z. For

any m ∈ N, we have

chG,pt(Im
G) ⊂

∞∏

p=m

CH
p

G
(pt) ⊗ Q.

Hence chG,X(Im
G

KG
• (X)) ⊂

∏∞
p=m CH

p

G
(X, •) by multiplicative property of the higher

Chern character. This means that the Chern character map induces a morphism

KG
• (X)/Im

G KG
• (X)→

m∏

p=0

CH
p

G
(X, •) ⊗ Q.

Taking the projective limit over m ∈ N gives rise to a morphism

KG
• (X)∧ →

∞∏

p=0

CH
p

G
(X, •) ⊗ Q

where KG
• (X)∧ = lim

←−−m
KG
• (X)/Im

G
KG
• (X) is the completion of KG

• (X) with respect to

the IG-adic topology.

When G acts on X with finite stabilizers (Definition 3.1), the group CH
p

G
(X, n) ⊗ Q

is generated by invariant codimension p cycles on X × ∆n, hence it vanishes for p

sufficiently large [42, Proposition 7.2]. So we can identify the infinite direct product
∏

p≥0 CH
p

G
(X, n) ⊗ Q with the direct sum

⊕

p≥0
CH

p

G
(X, n).

Now we can state Krishna’s generalization of Theorem 2.7 to the equivariant setting:

Theorem 3.6 (Atiyah–Segal’s completion [42, Theorem 4.6]). If G acts on X with

finite stabilizers, the equivariant higher Chern character factors through an isomor-

phism

chG,X : KG
• (X)∧ ⊗ Q→

⊕

p,n

CH
p

G
(X, n) ⊗ Q.
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4 Orbifold theories: global quotient by a finite group

In this section, we construct the stringy and orbifold K-theory and motivic cohomol-

ogy for Deligne–Mumford stacks in the more restricted case of a global quotient of a

smooth projective variety by a finite group action. We follow [36] when developing

this theory. From now on, the base field k is the field of complex numbers C. Higher

K-groups and higher Chow groups are always with rational coefficients.

4.1 Higher inertia varieties

Let X be a smooth projective variety over k endowed with a left action of a finite

group G. For any g ∈ G, let Xg be the fixed locus of g. More generally, for any

subgroup H ⊂ G, denote the fixed locus of H in X by XH, i.e., XH is the biggest closed

subscheme, with the reduced scheme structure, of X on which H acts trivially. By our

assumption, XH is smooth over k [21, Proposition 3.4]. If g = (g1, . . . , gn) ∈ Gn, we

will write Xg, or sometime Xg1,...,gn , for the fixed locus X〈g1,...,gn〉.

Recall from (3.1) that the inertia variety of X (with respect to G) is defined to be the

disjoint union

IG(X) :=
∐

g∈G

Xg ⊂ G × X.

We equip IG(X) with the G-action given by h.(g, x) = (hgh−1, hx).

Similarly, for any n ∈ N>0 the n-th inertia variety In
G

(X) of X (with respect to G) is

In
G(X) :=

∐

(g1,...,gn)∈Gn

X(g1,...,gn) ⊂ Gn × X,

equipped with the action of G given by

h.(g1, . . . , gn, x) = (hg1h−1, . . . , hgnh−1, hx). (4.1)

For convenience, we set I0
G

(X) := X. In the case of abelian groups, In+1
G

(X) is obvi-

ously the inertia variety of In
G

(X).

There are face maps

f n
i : In

G(X)→ In−1
G (X)

(g1, . . . , gn, x) 7→ (g1, . . . , gi−1gi, . . . , gn, x)
(4.2)

for 1 ≤ i ≤ n, and degeneracy maps

dn
i : In

G(X)→ In+1
G (X)

(g1, . . . , gn, x) 7→ (g1, . . . , gi−1, 1G, gi, . . . , gn, x)

for 1 ≤ i ≤ n + 1. It is straightforward to check that I•
G

(X) together with these maps

form a simplicial scheme. In the case of a point with the trivial action, I•
G

(pt) is the

simplicial group defining the classifying space of G.
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For 1 ≤ i ≤ n, there are also evaluation maps

en
i : In

G(X)→ In−1
G (X)

(g1, . . . , gn, x) 7→ (g1, . . . , ĝi, . . . , gn, x)
(4.3)

and the involution map

σ : In
G(X)→ In

G(X)

(g1, . . . , gn, x) 7→ (g−1
1 , . . . , g

−1
n , x)

All these maps defined above are obviously equivariant via the action (4.1).

For our purpose, we will not use the simplicial structure of I•
G

(X) but only work with

the inertia varitey IG(X) and the double inertia variety I2
G

(X). We will see later that the

maps e2
1
, e2

2
, f 2

2
, σ together with the obstruction bundle on I2

G
(X) are enough to obtain

new interesting invariants on IG(X). Nevertheless, there is no doubt that understanding

higher inertia varieties together with their simplical structure will gives us a more

complete picture about stringy (and later, orbifold) theories.

Remark 4.1 (Convention). We always understand that Xg is {g} × Xg ⊂ IG(X). We

write Xg,h for {(g, h)} × X〈g,h〉 in I2
G

(X). These conventions keep track of components

of the (double) inertia variety.

We set e1 := e2
2
, e2 := e2

1
and µ := f 2

2
. With this convention, the evaluation maps

ei : I2
G

(X) → IG(X) are the disjoint union of the inclusions X〈g1,g2〉 →֒ Xgi for i =

1, 2, and the multiplication µ : I2
G

(X) → IG(X) is the disjoint union of the inclusions

X〈g,h〉 →֒ Xgh. It is shown in [20] that by passing to the quotients by G, the three maps

e1, e2, σ ◦ µ give the evaluation maps

e1, e2, e3 : K0,3(X, 0)→ IX

from the stack K0,3(X, 0) of three pointed genus-0 degree-0 twisted stable maps to X,

to the inertia stack IX of X studied in [1].

4.2 Stringy K-theory

Definition 4.2. The stringy K-theory K(X,G) of X, as a graded vector space, is

defined to be the rational K-theory of its inertia variety, i.e.,

K•(X,G) := K•(IG(X)) =
∏

g∈G

K•(X
g).

The groups G acts on K•(X,G) via their actions on IG(X).

With the usual multiplication given by tensor product of vector bundles, it is well-

known that there is an isomorphism of R(G)-algebras

KG
• (X) ⊗ C � (K•(IG(X)) ⊗ C)G ,

see [58, Theorem 5.4] or [57, Theorem 1].
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Definition 4.3. Define ℑ ∈ K0(IG(X)) (the rational K0-group) to be such that for

any g ∈ G, its restriction ℑg in K0(Xg) is given by

ℑg := ℑ|Xg :=
∑

k

αk[Wg,k],

where 0 ≤ αk < 1 are rational numbers such that exp(2πiαk) are the eigenvalues of g

on the normal bundle NXg X and Wg,k are the corresponding eigenbundles.

It is straightforward to check that

ℑg + σ
∗ℑg−1 = [NXg X] (4.4)

in K0(Xg).

Definition 4.4 (Age). Notation is as before, the age function, denoted by age(g),

is the locally constant function on Xg defined by rk(ℑg).

Definition 4.5 (Obstruction bundle). The obstruction bundle class R is the element

in K0(I2
G

(X)) whose restriction to K0(Xg) is given by

R(g1, g2) : = ℑg1
|Xg + ℑg2

|Xg + ℑ(g1g2)−1 |Xg − [NXg X]

= e∗1(ℑg1
) + e∗2(ℑg2

) + (σ ◦ µ)∗(ℑ(g1g2)−1 ) − [NXg X]

for any g = (g1, g2) ∈ G2.

Jarvis–Kaufmann–Kimura have shown [36, Theorem 8.3] thatR(g) is represented by a

vector bundle on Xg which is the obstruction bundle of Fantechi–Göttsche for stringy

cohomology [22]. In particular, R(g) is a positive element in K0(Xg).

Definition 4.6 (Stringy product). Given (g1, g2) ∈ G2. For any x ∈ K•(X
g1 ) and

y ∈ K•(X
g2), we define the stringy product of x and y to be

x ⋆ y := µ∗
(

e∗1x ∪ e∗2y ∪ λ−1

(

R(g1, g2)∨
))

∈ K•(X
g1g2 ) (4.5)

which is extended linearly to a product on K•(X,G).

Theorem 4.7. The product (4.5) is associative (but may not be commutative).

In order to prove this theorem, we will need the following lemma. See §2.1 for the

definition of excess normal bundle.

Lemma 4.8 ([36, Lemma 5.2]). Let g := (g1, g2, g3) ∈ G3. Let E1,2 be the excess

normal bundle of

Xg Xg1,g2

Xg1g2,g3 Xg1g2

(4.6)
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and E2,3 the excess normal bundle of

Xg Xg2,g3

Xg1,g2g3 Xg2g3 ,

(4.7)

where all the morphisms are the natural inclusions. Then the following equation holds

in K0(Xg)

R(g1, g2)|Xg + R(g1g2, g3))|Xg + [E1,2] = R(g1, g2g3)|Xg + R(g2, g3)|Xg + [E2,3]. (4.8)

More precisely, they are equal to
∑3

i=1 ℑgi
|Xg + ℑ(g1g2g3)−1 |Xg − NXg X.

Proof of Theorem 4.7. We follow the proof of [36, Lemma 5.4] closely. The multi-

plicativity of λ−1 applies to (4.8) yields

λ−1(R(g1, g2)∨)|Xg ∪ λ−1(R(g1g2, g3)∨))|Xg ∪ λ−1(E1,2)∨

= λ−1(R(g1, g2g3)∨)|Xg ∪ λ−1(R(g2, g3)∨)|Xg ∪ λ−1(E2,3)∨.
(4.9)

Let g4 := g1g2g3 and consider the following diagram

Xg

e

{{✈✈
✈✈
✈✈
✈✈
✈

f

$$■
■■

■■
■■

■■

Xg1,g2

e1

{{①①
①①
①①
①①

e2

��

µ

$$❍
❍❍

❍❍
❍❍

❍❍
Xg1g2,g3

e1

zz✉✉
✉✉
✉✉
✉✉
✉

e2

��

µ

$$❍
❍❍

❍❍
❍❍

❍❍

Xg1 Xg2 Xg1g2 Xg3 Xg4

(4.10)

where e is the evaluation map e3
3

(4.3) and f is the face map f 3
2

(4.2). The middle

rhombus is the diagram (4.6). The natural embeddings ji : Xg → Xgi factor as

j1 = e1 ◦ e j2 = e2 ◦ e

j3 = e2 ◦ f j4 = µ ◦ f .

For any x ∈ K•(X
g1), y ∈ K•(X

g2), z ∈ K•(X
g3), we have

(x ⋆ y) ⋆ z

:= µ∗
{

e∗1

[

µ∗
(

e∗1x ∪ e∗2y ∪ λ−1(R(g1, g2)∨)
)]

∪ e∗2z ∪ λ−1(R(g1g2, g3)∨)
}

= µ∗
{

f∗
[

e∗
(

e∗1x ∪ e∗2y ∪ λ−1(R(g1, g2)
)

∪ λ−1(E∨1,2)
]

∪ e∗2z ∪ λ−1(R(g1g2, g3)∨)
}

= µ∗
{

f∗
[

e∗e∗1x ∪ e∗e∗2y ∪ e∗λ−1(R(g1, g2)∨) ∪ λ−1(E∨1,2)
]

∪ e∗2z ∪ λ−1(R(g1g2, g3)∨)
}

= µ∗
{

f∗
[

e∗e∗1x ∪ e∗e∗2y ∪ e∗λ−1(R(g1, g2) ∪ λ−1(E∨1,2)

∪ f ∗e∗2z ∪ f ∗λ−1(R(g1g2, g3)∨)
]}

= i4∗
(

j∗1 x ∪ j∗2y ∪ e∗(λ−1R(g1, g2) ∪ λ−1(E∨1,2) ∪ j∗3z ∪ f ∗(λ−1R(g1g2, g3)∨)
)

= j4∗
(

j∗1 x ∪ j∗2y ∪ j∗3z ∪ λ−1R(g1, g2)∨|Xg ∪ λ−1R(g1g2, g3)∨|Xg ∪ λ−1E∨1,2
)

,

(4.11)
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where the second equility follows from the excess intersection formula (Proposition

2.2), the fourth equality follows from the projection formula (Proposition 2.1).

Using a similar argument, we have

x ⋆ (y ⋆ z) = j4∗( j∗1 x ∪ j∗2y ∪ j∗3z ∪ λ−1R(g1, g2g3)∨|Xg ∪ λ−1R(g2, g3)∨|Xg ∪ λ−1E∨2,3).

(4.12)

By (4.9), the two expressions (4.11) and (4.12) are equal. �

4.3 Stringy higher Chow groups

Definition 4.9. We define the stringy higher Chow group CH∗(X,G, •) of X, as a

bigraded vector space, to be the rational higher Chow group of the inertia variety, with

codimension degree shifted by the age function (Definition 4.4), i.e.,

CHi(X,G, •) := CHi−age(IG(X), •) =
∏

g∈G

CHi−age(g)(Xg, •).

Note that there are isomorphisms (see [18, Theorem 3]):

CH
p

G
(X, n) ⊗ Q � CHp(X/G, n) ⊗ Q � (CHp(X, n) ⊗ Q)G

.

Definition 4.10 (Stringy product). Given g = (g1, g2) ∈ G2. For any x ∈

CHi−age(g1)(Xg1 , •) and y ∈ CH j−age(g2)(Xg2 , •), we define the stringy product of x and y

in CHi+ j−age(g1g2)(Xg1g2 , •) to be

x ⋆ y := µ∗(e
∗
1x ∪ e∗2y ∪ ctop(R(g))). (4.13)

We extend linearly this product to the whole CH∗(X,G, •).

The multiplicativity of the top Chern character and the equality (4.8) give

ctop(R(g1, g2))|Xg ∪ ctop(R(g1g2, g3)))|Xg ∪ ctop(E1,2)

= ctop(R(g1, g2g3))|Xg ∪ ctop(R(g2, g3))|Xg ∪ ctop(E2,3).
(4.14)

A similar argument as in the proof of Theorem (4.7) (cf. [36, Lemma 5.4]) shows that

Theorem 4.11. The stringy product for stringy motivic cohomology (4.13) is asso-

ciative.

Following [36, (6.1)] we introduce the following:

Definition 4.12 (Stringy Chern character). The stringy Chern character Ch :

K•(X,G)→ CH∗(X,G, •) to be

Ch(xg) := ch(xg) ∪ td−1(ℑg) (4.15)

for all g ∈ G and xg ∈ K•(X
g), where td is the usual Todd class and ch is the higher

Chern character map in Theorem 2.7.
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Theorem 4.13. The stringy Chern character is a multiplicative homomorphism,

with respect to the stringy products.

Proof. The proof is along the same line of [36, Theorem 6.1], with techniques on K-

theory/Chow-theory replaced by their higher analogues. Recall that if E is a vector

bundle on X, then

td([E])ch(λ−1[E∨]) = ctop([E]) (4.16)

in CH∗(X).

Let g = (g1, g2) ∈ G2 and xi ∈ K•(X
gi) for i = 1, 2. Set g = g1g2 and R = R(g1, g2).

We have

Ch(x1 ⋆ x2) = ch(x1 ⋆ x2)td−1(ℑg)

= ch
[

µ∗
(

e∗1x1e∗2x2λ−1(R∨)
)]

td−1(ℑg)

= µ∗
[

ch
(

e∗1x1e∗2x2λ−1(R∨)td(T Xg)
)]

td−1(T Xg)td−1(ℑg)

= µ∗
[

e∗1ch(x1)e∗2ch(x2)ch(λ−1(R∨))td(T Xg))
]

td−1(T Xg)td−1(ℑg)

= µ∗
[

e∗1ch(x1)e∗2ch(x2)ctop(R)td−1(R)td(T Xg]
]

td−1(T Xg)td−1(ℑg)

= µ∗
[

e∗1ch(x1)e∗2ch(x2)ctop(R)td(T Xg − R)
]

td(−T Xg − ℑg)

= µ∗
[

e∗1ch(x1)e∗2ch(x2)ctop(R)td(T Xg − R)µ∗td(−T Xg − ℑg)
]

= µ∗
[

e∗1ch(x1)e∗2ch(x2)ctop(R)td(T Xg − R − µ∗T Xg − µ∗ℑg)
]

where the first two equalities follow from definition, the third follows from the

Riemann–Roch Theorem 2.9, the fourth from the fact that the higher Chern character

respects pull-backs and multiplications, the fifth follows from (4.16), the seventh is

the projection formula, the sixth and the eighth follow from multiplicativity of td.

We also have

Ch(x1) ⋆ Ch(x2) =
(

ch(x1)td−1(ℑg1
)
)

⋆
(

ch(x2)td−1(ℑg2
)
)

=µ∗
[

e∗1

(

ch(x1)td−1(ℑg1
)
)

e∗g2

(

ch(x2)td−1(ℑg2
)
)

ctop(R)
]

=µ∗
[

e∗1ch(x1)td−1(e∗1ℑg1
)e∗g2

ch(x2)td−1(e∗2ℑg2
)ctop(R)

]

=µ∗
[

e∗1ch(x1)e∗2ch(x2)ctop(R)td(−e∗1ℑg1
− e∗2ℑg2

)
]

where the first two equalities are definitions, the third holds because pull-backs respect

multiplication, the fourth follows from the multiplicativity of td. Hence, it is sufficient

to prove that

T Xg − R − µ∗T Xg − µ∗ℑg = −e∗1ℑg1
− e∗2ℑg2

(4.17)
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in K0(Xg1,g2 ). Indeed,

T Xg − R − µ∗T Xg − µ∗ℑg =T Xg − R − T Xg|Xg − ℑg|Xg

=(T Xg + NXg X) − T Xg|Xg − ℑg|Xg − R − NXg X

=T X|Xg − T Xg|Xg − ℑg|Xg − (R + NXg X)

=NXg X|Xg − ℑg|Xg − (R + NXg X)

=σ∗ℑg−1 |Xg − (ℑg1
|Xg + ℑg2

|Xg + ℑg−1 |Xg)

=µ∗σ∗ℑg−1 − e∗g1
ℑg1
− e∗g2

ℑg2
− (σ ◦ µ)∗ℑg−1

= − e∗1ℑg1
− e∗2ℑg2

where the first equality is definition, the third and the fourth are the natural relation of

tangent bundle and normal bundle in the Grothendieck group, the fifth follows from

(4.4). �

Lemma 4.14. The stringy products on K•(IG(X)), CH∗(IG(X), •) are compatible with

the G-actions.

Proof. It is easy to check that R(g−1g1g, g−1g2g) = g∗R(g1, g2) for any g, g1, g2 ∈ G.

Hence

λ−1

(

R(g−1g1g, g−1g2g)∨
)

= g∗λ−1

(

R(g1, g2)∨
)

.

The identity g ◦ ei = ei ◦ g implies that g∗ ◦ e∗
i
= e∗

i
◦ g∗ for i = 1, 2. The diagram

I2
G

(X) IG(X)

I2
G

(X) IG(X)

µ

g g

µ

is Cartesian. It follows that g∗µ∗ = µ∗g
∗ on K-groups by [55, Proposition 3.18]. So

we have

(g∗x) ⋆ (g∗y) = µ∗
[

e∗1g∗x ∪ e∗2g∗y ∪ λ−1(R(g−1g1g, g−1g2g)∨)
]

= µ∗
[

g∗e∗1x ∪ g∗e∗2y ∪ g∗λ−1(R(g1, g2)∨)
]

= µ∗
[

g∗
(

e∗1x ∪ e∗2y ∪ λ−1(R(g1, g2)∨)
)]

= g∗
[

µ∗
(

e∗1x ∪ e∗2y ∪ λ−1(R(g1, g2)∨)
)]

= g∗(x ⋆ y)

for any x, y ∈ K∗(IG(X)). The same argument works for CH∗(IG(X), •). �

Definition 4.15 (Orbifold theories). Let X and G be as before and X = [X/G] be

the quotient stack. The small orbifold K-theory and small orbifold higher Chow ring

of X are defined by the G-invariant subalgebra of the corresponding stringy theories:

Korb
• (X) := K•(X,G)G
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CH∗orb(X, •) := CH∗(X,G, •)G

with the orbifold products are defined as the restriction of the stringy products on the

G-invariants.

We will show later (Proposition 5.9) that these definitions are independent of the

choice of representations of X. Note that the stringy higher Chern character induces a

ring isomorphism between these two small orbifold theories.

Proposition 4.16. The small orbifold products on orbifold K-theory and orbifold

higher Chow ring are graded commutative.

Proof. We only prove the statement for the orbifold K-theory, the proof for orbifold

higher Chow groups is similar. Just as in [22, Theorem 1.30], it is enough to show that

for any g, h ∈ G, any x ∈ K•(X
g) and y ∈ K•(X

h), we have the twisted commutativity

relation:

x ⋆ y = y ⋆ h∗(x) in K•(X
gh),

where h∗(x) ∈ K•(X
h−1gh) is the image of x ∈ K•(X

g) via the natural isomorphism

h. : Xh−1gh
�

−→ Xg.

To this end, let i : X〈g,h〉 →֒ Xgh be the natural inclusion. The following straightfor-

ward computation proves the desired equality:

x ⋆ y =i∗
(

x|X〈g,h〉 · y|X〈g,h〉 · λ−1R(g, h)∨
)

=i∗
(

y|X〈g,h〉 · h
∗(x)|X〈g,h〉 · λ−1R(h, h−1gh)∨

)

=y ⋆ h∗(x).

Here the second equality uses the fact that R(g, h) = R(h, h−1gh), see [22, Lemma

1.10]. �

4.4 Realization functors

For a compact, almost complex manifold X endowed with an action of a finite group G

preserving the almost complex structure, the same construction above can be carried

over to define the stringy topological K-theory K•top(X,G), the stringy cohomology

H∗(X,G) (with stringy products) and the stringy topological Chern character (see [36,

10.2] and [22]).

Let X be a complex algebraic variety. The set of C-points X(C) inherits the classical

(analytic) topology. The assignment X 7→ X(C) defines a functor from the category of

(projective) complex varieties to the category of (compact) topological spaces, which

sends smooth complex varieties to complex manifolds. We will write K•top(X) and

H∗(X) for the topological K-theory and singular cohomology of X(C), respectively.

The assignment E 7→ E(C) induces an exact functor from the category of algebraic

vector bundles on X to the category of complex topological vector bundles on X(C).

This induces a natural transformation

F0(−) : K0(−)→ K0
top(−)
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between contravariant functors with values in commutative rings which preserves mul-

tiplication. This is also a natural transformation of covariant functors on the category

of smooth projective complex varieties (Baum–Fulton–MacPherson’s Riemann–Roch

[6]). More generally, for any n, there is a natural transformation

Fn(−) : Kn(−)→ K−n
top(−)

with the same functorial properties [23].

Similarly, the assigment Z → Z(C) and Poincaré duality define the cycle class map

CH∗(X)→ H2∗(X). It is generalized to define a natural transformation

F′ : CH∗(−, •)→ H2∗−•(−)

which forms the commutative diagram of natural transformations

K•(−) K•top(−)

CH∗(−, •) ⊗ Q H2∗−•
top (−) ⊗ Q,

F

ch ch

F′

where ch is the topological Chern character. The vertical arrows become isomor-

phisms if we use rational coefficients. Moreover, this diagram is compatible with

Riemann–Roch transformations on both algebraic and topological sides [23, Theorem

5.2].

If G is a finite group acting on X, it acts on X(C) and preserves the (almost) complex

structure. Moreover Xg(C) = X(C)g for any g ∈ G. Combining all of these compatible

properties, and the fact that the obstruction classR(g) is represented by the obstruction

bundle of Fantechi-Göttsche [22], we obtain ring homomorphisms

F : K•(X,G)→ K•top(X,G)

and

F′ : CH∗(X,G, •)→ H∗(X,G)

between stringy theories. These homomorphisms obviously commute with the stringy

Chern characters.

However, for each smooth complex projective variety X, the composition

ch ◦ Fn = F′n ◦ ch : Kn(X)→ H∗(X) ⊗ Q

is known to be zero when n ≥ 1 (see for example [30]). Therefore, all the algebraic

elements in the stringy topological K-theory K∗top(X,G) (resp. in the stringy coho-

mology H∗(X,G)) only come from the orbifold Grothendieck ring K0(X,G) (resp. the

orbifold Chow ring CH∗(X,G)). In other words, these topological invariants do not

give much information about our motivic theories.

One way to obtain the information of (rational) higher algebraic K-theory and mo-

tivic cohomology by means of topological and geometric data is to use the so-called
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Beilinson (higher) regulator map whose target is the Deligne cohomology. For more

details about the regulator map and its relation with the Beilinson’s conjectures on the

values of L-functions, we refer the reader to [8] and [9].

Let X be a complex projective variety. The Deligne complex QD(p) is the complex

QD(p) := (2πi)pQ→ OX → Ω
1
X → . . .→ Ω

p−1

X

of analytic sheaves on the analytic manifold X(C). The Deligne cohomology

H
q

D
(X,Q(p)) is defined to be the hypercohomology of QD(p), i.e.,

H
q

D
(X,Q(p)) := Hq(X(C),QD(p)).

The total Deligne cohomology H•
D

(X,Q(∗)) :=
⊕

q,p
H

q

D
(X,Q(p)) forms a ring with

the cup product satisfying the graded commutativity, i.e., x ∪ y = (−1)qq′y ∪ x if

x ∈ H
q

D
(X,Q(p)) and y ∈ H

q′

D
(X,Q(p′)). It is covariantly functorial with respect to

proper morphisms and contravariantly functorial with respect to arbitrary morphisms

in SmC.

We have the Beilinson (higher) regulator map [8]:

ρ : Kn(X)→
⊕

p≥0

H
2p−n

D
(X,Q(p)),

which is known to be the composition of the the higher Chern character map ch :

Kn(X)→ CH∗(X, n) constructed by Gillet [29] and the the higher cycle class map

τ : CHp(X, n) ⊗ Q→ H
2p−n

D
(X,Q(p))

constructed by Bloch in [9] (see [38] for a refinement). In other words, the following

diagram

Kn(X)
⊕

p
CHp(X, n) ⊗ Q

⊕

p
H

2p−n

D
(X,Q(p)).

ch

ρ
τ

commutes.

The higher cycle class map τ is co- and contravariantly functorial and commutes with

cup product. Similar to the higher Chern character ch, the Beilinson regulator ρ is

contravariantly functorial and commutes with cup product, but not covariantly func-

torial. The lack of commutativity of ρ with taking push-forward is corrected by the

Todd class of the tangent bundle. If f : X → Y is a proper morphism between smooth

projective varieties, then the following digram commutes

K•(Y) ⊗ Q K•(X) ⊗ Q

H2∗−•
D

(Y,Q(∗)) H2∗−•
D

(X,Q(∗))

f∗

td(TY)ρ td(T X)ρ

f∗
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For any vector bundle V on X, the top Chern class cDtop(V) of V is defined to be the ele-

ment τ(ctopV) in H2∗
D

(X,Q(∗)). It is well-known that the Deligne cohomology satisfies

projection formula and excess intersection formula.

Let G be a finite group acting on X, the construction in the previous subsections is

applied to define the following

Definition 4.17. The stringy Deligne cohomology is

H•D(X,G,Q(∗)) := H•D(IG(X),Q(∗)).

The stringy product on the stringy Deligne cohomology is

α ⋆D β := µ∗(e
∗
1α ∪ e∗2β ∪ cDtop(R)).

The calculation in Section 4 carries over to show that this stringy product is associa-

tive, compatible with the G-action, and when restricting to the G-invariant part, it is

graded commutative. Moreover, by mimicking the proof of Theorem 4.13, we obtain

Theorem 4.18. • The higher cycle class map

τ : CH∗(X,G, •)→ H2∗−•
D (X,G,Q(∗))

is a ring homomorphism with respect to the stringy product.

• Define the stringy regulator

p : K•(X,G)→ H2∗−•
D (X,G,Q(∗))

by the formula

p(xg) := ρ(xg) ∪ td−1(ℑg)

for any xg ∈ K•(X
g) ⊗ Q. Then p is a ring homomorphisms with respect to the

stringy products.

Remark 4.19. We can replace the Deligne cohomology in the above discussion by the

absolute Hodge cohomology. The results hold without any change.

5 Orbifold theories: general setting

In this section, we will generalize the orbifold theories constructed in the previous

section where a finite group action is considered, to the case of a proper action by a

linear algebraic group. Namely, we assume that G is a complex algebraic group acting

on a complex algebraic variety X. Equivariant algebraic K-theory and equivariant

higher Chow groups are considered with rational coefficients. Our approach is the one

in [20] using twisted pull-backs.
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5.1 Set-up and decomposition into sectors

For any natural number n, the n-th inertia variety In
G

(X) is defined in §4.1. Let X be

the quotient Deligne–Mumford stack [X/G], then its inertia stack IX := X ×X×X X is

canonically identified with the following quotient stack

IX = [IG(X)/G].

Similarly, the n-th inertia stack ofX, which is by definition In
X

:= IX ×X · · · ×X IX
︸               ︷︷               ︸

n

=

X ×X×X · · · ×X×X X
︸                   ︷︷                   ︸

n

, is identified with the quotient stack

In
X = [In

G(X)/G].

Note that for any n, the inertia stack In
X

is independent of the choice of the presentation

of X.

Definition 5.1. A diagonal conjugacy class is an equivalence class in Gn for the

action of G given by h.(g1, . . . , gn) := (hg1h−1, . . . , hgnh−1). We will denote the diago-

nal conjugacy class of (g1, . . . , gn) by {(g1, . . . , gn)}. For any diagonal conjugacy class

Ψ in Gn, we set

I(Ψ) := {(g1, . . . , gn, x) | g1x = . . . = gnx = x and (g1, . . . , gn) ∈ Ψ} ⊂ In
G(X).

If G acts quasi-freely, then I(Ψ) = ∅ unless Ψ consists of elements of finite order.

Since we are working over an algebraically closed field of characteristic zero, we have

Proposition 5.2 ([20, Proposition 2.17 and Lemma 2.27]). If G acts quasi-freely

on X, then In
G

(X) is the disjoin union of finitely many I(Ψ)’s. Moreover, each I(Ψ)

is smooth if X is smooth. In particular, the projection π : I(Ψ) → X is a finite l.c.i

morphism.

In particular, the inertia variety IG(X) contains X = X{1} as a connected component.

This is called the non-twisted sector. The other components IG(Ψ) are called the

twisted sectors.

Remark 5.3. All the structure maps considered in the case of finite groups (Section

4.1) fit well into this generalization. For any g ∈ Gn with the diagonal conjugacy class

Ψ, we replace each fixed locus Xg by the component I(Ψ). The only difference is that

the face and the evaluation maps are no longer inclusions but finite l.c.i morphisms by

the above Proposition.

For any g ∈ G, denote ZG(g) the centralizer of g in G. For g := (g1, . . . , gn) ∈ Gn, let

ZG(g) :=
⋂n

i=1 ZG(gi) and Xg =
⋂n

i=1 Xgi with the reduced scheme structure.

Proposition 5.4. We have the decompositions

CH∗(In
X, •) = CH∗G(In

G(X), •) �
⊕

Ψ

CH∗ZG (g)(X
g, •)
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K•(I
n
X) = KG

• (In
G(X)) �

⊕

Ψ

K
ZG(g)
• (Xg)

where Ψ runs over all diagonal conjugacy classes of Gn such that I(Ψ) , ∅ and g is a

representative for each Ψ.

Proof. We prove the proposition only in the case of n = 1 to simplify the notation.

The proof for an arbitrary n is similar.

Consider firstly the case of higher K-theory. Since IG(X) =
∐

Ψ I(Ψ) and G acts on

each I(Ψ) under this decomposition, we have

KG
• (IG(X)) =

⊕

Ψ

KG
• (I(Ψ)).

So, we only need to prove that

KG
• (I(Ψ)) = K

ZG (g)
• (Xg) (5.1)

for any g ∈ Ψ.

Define the action of G × ZG(g) on G × Xg by the formula

(h, z).(k, x) : = (hkz−1, zx)

and consider G × Xh as a G- and ZG(g)-scheme by identifying the groups G and ZG(g)

with G × 1 and 1 × ZG(g) ⊂ G × ZG(g), respectively.

The map G × Xg → I(Ψ), (g, x) 7→ g.x is obivously a G-equivariant map and a ZG(g)-

torsor. The category of G-vector bundles on I(Ψ) is hence equivalent to the category

of G × ZG(g)-vector bundles on G × Xg [52, Proposition 6.2]. Therefore

KG
• (I(Ψ)) = K

G×ZG (g)
• (G × Xg). (5.2)

Similarly, the projection G × Xg → Xg is a ZG(g)-equivariant map and is a G-torsor.

The category of ZG(g)-vector bundles on Xg is equivalent to the category of G×ZG(g)-

vector bundles on G × Xg and we have

K
ZG (g)
• (Xg) = K

G×ZG (g)
• (G × Xg). (5.3)

The statement for equivariant K-theory is followed from (5.2) and (5.3).

Now we consider the case of higher Chow groups. For each index i ∈ N, let V be

a representation of G × ZG(g) and U ⊂ V such that G × ZG(g) acts freely on U and

V − U ⊂ V has codimension at least i + 1. Consider V and U as G- and ZG(g)-sets in

the obvious way. We have

CHi
ZG (g)(X

g, n) : = CHi ((Xg × U)/ZG(g), n)

= CHi((G × Xg × U)/(G × ZG(g)), n)

= CHi((I(Ψ) × U)/G, n)

= : CHi
G(I(Ψ), n).
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The second identity follows from the fact that the projection G×Xg → Xg is a G-torsor,

hence

(G × Xg × U)/(G × ZG(g)) = [(G × Xg × U)/G]/ZG(g) = (Xg × U)/ZG(g).

The third identity follows similarly from the fact that G × Xg → I(Ψ) is a ZG(g)-

torsor. �

5.2 Twisted pullback and orbifold products

We first recall the key constructions in [20]. Assume that Z is an algebraic group

acting on X. Let V be a Z-vector bundle on X. Let g be an element of finite order

acting on the fibers of V such that this action commutes with Z-action. We define the

logarithmic trace L(g)(V) by

L(g)(V) =

r∑

k=1

αkVk ∈ KZ
0 (X)

where 0 ≤ α1, . . . , αr < 1 are rational numbers such that exp(2πiαk) are the eigenval-

ues of g and Vk are the corresponding eigenbundles (compare to Definition 4.3).

Definition 5.5 (Twisted pull-backs, cf. [20]). Keep the same notations as in Propo-

sition 5.4. For any n ≥ 1, the twisted pullback map is defined to be

f tw : KG
0 (X)→ KG

0 (In
G(X)) =

⊕

Ψ

K
ZG (g)

0
(Xg)

whose Ψ-summand is given by

f tw
Ψ : KG

0 (X)→ K
ZG (g)

0
(Xg)

V 7→

n∑

i=1

L(gi)(V |Xg) + L(g1 . . .gn)−1(V |Xg) + Vg − V |Xg ,

where g ∈ Ψ is any representative.

For any any conjugacy class Ψ in G, we use the notation L(Ψ) to denote the composi-

tion of L(g) with the isomorphism K
ZG(g)
• (Xg) � KG

• (I(Ψ)), where g is any element in

Ψ. The maps L(Ψ) and f tw
Ψ

are independent of the choice of representatives.

Let TX := TX − g where g is the Lie algebra of G. If it will not cause confusion,

we will ignore to subscript X to simply write T for TX . Since T = π∗(TX) where

π : X → X = [X/G] is the universal G-torsor [20, Lemma 6.6], T is a positive element

in KG
0

(X) and its image in K0(X) is independent of the presentation of X as a quotient

stack. Since the twisted pullback map f tw takes non-negative elements to non-negative

elements [20, Proposition 4.6], f tw(T) is a non-negative element in KG
0

(I2
G

(X)).

Definition 5.6. The element f twT is called the obstruction bundle and is denoted

by Ttw. For each diagonal conjugacy class Ψ in G2, the restriction of Ttw to KG
0

(I(Ψ))

is denoted by Ttw(Ψ).
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We can now mimic [20] to define the orbifold product for K-theory and higher Chow

groups.

Definition 5.7. Let e1, e2, µ : I2
G

(X) → IG(X) be the three natural morphisms in

§4.1.

(i) The orbifold product ⋆cT on CH∗G(IG(X), •) is defined by

α ⋆cT β := µ∗
(

e∗1α ∪ e∗2β ∪ ctop(Ttw)
)

.

The orbifold higher Chow ring of [X/G], denoted by CH∗orb([X/G], •), is defined

to be CH∗G(IG(X), •) equipped with the orbifold product ⋆cT .

(ii) The orbifold product ⋆ET on KG
• (IG(X)) is defined by

α ⋆ET β := µ∗
(

e∗1α ∪ e∗2β ∪ λ−1(Ttw)∨
)

.

The orbifold K-theory of [X/G], denoted by Korb
• ([X/G]), is defined to be

KG
• (IG(X)) equipped with the orbifold product ⋆ET .

Remark 5.8. On equivariant K-theory, push-forwards are R(G)-module homomor-

phisms and pull-backs are R(G)-algebra homomorphisms (Section 3.2). This implies

that the orbifold product ⋆ET on KG
• (IG(X)) commutes with the natural action of R(G).

In particular, ⋆ET induces a product on the completion KG
• (IG(X))∧, which is also

called orbifold product and is denoted by the same symbol ⋆ET .

Proposition 5.9. The orbifold products ⋆cT and ⋆ET are independent of the choice

of presentation of X = [X/G] as a quotient stack.

Proof. We only need to show that the obstruction bundle Ttw in KG
0

(I2
G

(X)) = K0(I2
X

)

is independent of the choice of presentation of X. This is done by using again the

double filtration argument [20, Theorem 6.3]. �

Remark 5.10. In the case of a finite group, Ttw is nothing but the obstruction bun-

dle R in Definition 4.5. Therefore, under the ring isomorphism CH∗
G

(IG(X), •) �

CH∗(IG(X), •)G (with respect to the usual product), the orbifold product ⋆cT is just

the orbifold product ⋆ defined in the Section 4. This implies that the small orbifold

product on CH∗orb(X, •) is also independent of the choice of presentation of X as a

quotient stack. Since the stringy higher Chern character induces a ring isomorphism

Korb
• (X) � CH∗orb(X, •) with respect to orbifold products, we obtain the desired result

for the small orbifold K-theory Korb
• (X).

Theorem 5.11. The orbifold products ⋆cT on CH∗G(IG(X), •) and ⋆ET on KG
• (IG(X))

are associative.

Proof. Given g1, g2, g3 ∈ G, let g4 := g1g2g3. Let Ψ1,2,3 := {(g1, g2, g3)}, Ψ12,3 :=

{(g1g2, g3)}, Ψ1,23 := {(g1, g2g3)}, and so on, be the diagonal conjugacy classes. Let
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e1,2 := e3
3
, e2,3 := e3

1
, µ12,3 := f 3

2
and µ1,23 := f 3

3
be the structure maps defined in the

section 4.1. The diagrams

I(Ψ1,2,3) I(Ψ1,2)

I(Ψ12,3) I(Ψ12)

e1,2

µ12,3 µ

e1

(5.4)

and

I(Ψ1,2,3) I(Ψ2,3)

I(Ψ1,23) I(Ψ23)

e2,3

µ1,23 µ

e2

(5.5)

are Cartesian, and the vertical arrows are finite l.c.i morphisms. Let E1,2 and E2,3 the

excess intersection bundle of (5.4) and (5.5), respectively, then

e∗1,2T
tw(Ψ1,2) + µ∗12,3T

tw(Ψ12,3) + E1,2 = e∗2,3T
tw(Ψ2,3) + µ∗1,23T

tw(Ψ1,23) + E2,3 (5.6)

[20, (26)].

Consider the diagram

I(Ψ1,2,3)

e1,2

yytt
tt
tt
tt
t

µ12,3

%%❑
❑❑

❑❑
❑❑

❑❑

I(Ψ1,2)

e1

zz✈✈
✈✈
✈✈
✈✈
✈

e2

��

µ

%%❏
❏❏

❏❏
❏❏

❏❏
I(Ψ12,3)

e1

yyss
ss
ss
ss
s

e2

��

µ

$$■
■■

■■
■■

■■

I(Ψ1) I(Ψ2) I(Ψ12) I(Ψ3) I(Ψ4)

where the middle rhombus is the diagram (5.4). Denote ji : I(Ψ1,2,3) → I(Ψi) for the

obvious morphisms with i = 1, . . . , 4.

Let x ∈ KG
∗ (I(Ψ1)), y ∈ KG

∗ (I(Ψ2)) and z ∈ KG
∗ (I(Ψ3)). We have

(x ⋆ET y) ⋆ET z

= j4∗
(

j∗1x ∪ j∗2y ∪ j∗3z ∪ λ−1(e∗1,2T
tw(Ψ1,2)∨) ∪ λ−1(µ∗12,3T

tw(Ψ12,3)∨) ∪ λ−1(E∨1,2)
)

= j4∗
(

j∗1x ∪ j∗2y ∪ j∗3z ∪ λ−1(e∗2,3T
tw(Ψ2,3)∨) ∪ λ−1(µ∗1,23T

tw(Ψ1,23)∨) ∪ λ−1(E∨2,3)
)

=x ⋆ET (y ⋆ET z)

(5.7)

where the second identity follows from (5.6), the first and the third one follow from the

analogous calculation in the proof of Theorem 4.7, replacing the projection formula

by the equivariant projection formula [52, Corollary 5.8] and the excess intersection

formula by the equivariant excess intersection formula [40, Theorem 3.8] for finite

l.c.i morphisms.
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The same argument works for equivariant higher Chow groups, where equivariant

projection formula and excess intersection formula for finite l.c.i morphisms are direct

consequences of the corresponding formulas in the non-equivariant setting. �

Proposition 5.12. The orbifold products are graded commutative with identity.

Proof. It is straightforward to check that the identity for ⋆ET is [OIG ({1})] ∈ KG
0

(IG(X))

and the identify for ⋆cT is [IG({1})] ∈ CH∗G(IG(X)).

We prove the graded commutativity for ⋆ET . The case of ⋆cT is similar.

Let i : I2
G

(X)→ I2
G

(X) be the involution induced the by involution i : G2 → G2 which

exchanges the factors. We have

i∗(Ttw(Ψ)) = Ttw(i(Ψ))

for any diagonal conjugacy class Ψ in G2.

Let Ψ1 = e1(Ψ), Ψ2 = e2(Ψ) and Ψ3 = µ(Ψ). Let α ∈ KG
• (I(Ψ1)) and β ∈ KG

• (I(Ψ2)).

The product α ⋆ET β has a contribution in KG
• (I(Ψ3)) given by

µ∗(e
∗
1(α) ∪ e∗2(β) ∪ λ−1T

tw(Ψ)).

The product β ⋆ET α has a contribution in KG
• (I(Ψ3)) given by

µ∗(e
∗
1(β) ∪ e∗2(α) ∪ λ−1T

tw(i(Ψ))).

Since e1 ◦ i = e2, e2 ◦ i = e1 and the diagram

I2
G

(Ψ) IG(Ψ3)

I2
G

(i(Ψ)) IG(Ψ3)

µ

i id

µ

is Cartesian, we have

µ∗(e
∗
1(β) ∪ e∗2(α) ∪ λ−1T

tw(i(Ψ))) =µ∗(i
∗e∗2(β) ∪ i∗e∗1(α) ∪ λ−1i∗Ttw(Ψ))

=µ∗
(

i∗(e∗2(β) ∪ e∗1(α) ∪ λ−1T
tw(Ψ))

)

=µ∗(e
∗
2(β) ∪ e∗1(α) ∪ λ−1T

tw(Ψ)).

�

Similarly to [20, Definition 7.3], we introduce the following notion which relates two

(higher) orbifold theories.

Definition 5.13. The orbifold Chern character is the map

ch : KG
• (IG(X))→ CH∗G(IG(X), •)

given by the formula

ch(FΨ) := ch(FΨ)td(−L(Ψ)(T))

for any FΨ ∈ KG
• (I(Ψ)).
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Theorem 5.14. The map ch : KG
• (IG(X))→ CH∗G(IG(X), •) is a ring homomorphism

with respect to orbifold products ⋆ET and ⋆cT . Moreover, this map factors through the

completion and gives rise to an isomorphism

ch : KG
• (IG(X))∧ → CH∗G(IG(X), •). (5.8)

Proof. Given conjugacy classes Ψ1, Ψ2 in G and elements α1 ∈ KG
• (I(Ψ1)), α2 ∈

KG
• (I(Ψ2)), let Ψ1,2 be a diagonal conjugacy class in G2 such that e1(Ψ1,2) = Ψ1,

e2(Ψ1,2) = Ψ2. Let Ψ12 := µ(Ψ1,2). By a similar argument as in the proof of Theorem

4.13, we have that ch(α1 ⋆ET α2) is equal to

µ∗[e
∗
1ch(α1)e∗2ch(α2)ctop(Ttw(Ψ1,2))td(TI(Ψ1,2) − µ

∗TI(Ψ12) − T
tw(Ψ1,2) − µ∗L(Ψ12)(T)]

while ch(α1) ⋆cT ch(α2) is equal to

µ∗[e
∗
1ch(α1)e∗2ch(α2)ctop(Ttw(Ψ1,2))td(−e∗1L(Ψ1)(T) − e∗2L(Ψ2)(T)].

The identity

TI(Ψ1,2) − µ
∗TI(Ψ12) − T

tw(Ψ1,2) − µ∗L(Ψ12)(T) = −e∗1L(Ψ1)(T) − e∗2L(Ψ2)(T)

in KG
• (I(Ψ1,2)) (compare to (4.17)) is verified in [20, Equation (42)]. This yields the

desired result.

The factorization (5.8) follows from the corresponding property of the higher Chern

character. The bijectivity follows from the completion theorem (Theorem 3.6) and the

invertibility of td(−L(Ψ)(T)) in CH∗G(IG(X), •). �

Theorem 5.15. Let G be a group and X, Y be smooth projective varieties endowed

with G-actions. Let f : X → Y be a G-equivariant étale morphism. Then

(i) The pull-backs

f ∗ : KG
• (IG(Y))→ KG

• (IG(X))

and

f ∗ : CH∗G(IG(Y), •)→ CH∗G(IG(X), •)

are ring homomorphisms with respect to the orbifold products. Moreover, the

orbifold higher Chern character commutes with pull-backs.

(ii) (Riemann–Roch) For any conjugacy classΨ in G, let IX(Ψ) ⊂ IG(X) and IY(Ψ) ⊂

IG(Y) be the corresponding subvarieties. Then the following diagram commutes

KG
• (IX(Ψ)) KG

• (IY(Ψ))

CH∗G(IX(Ψ), •) CH∗G(IY (Ψ), •)

f∗

tdG(TIX (Ψ))ch(−) tdG(TIY (Ψ))ch(−)

f∗
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Proof. Since f is étale, f ∗TY = TX , hence f ∗TY = TX . It is also clear from the

construction that f ∗L(Ψ)(TY) = L(Ψ)(TX) and f ∗Ttw
Y
= Ttw

X
. This implies part (i).

For part (ii), let FΨ ∈ KG
• (IX(Ψ)). By the projection formula and the equivariant

Riemann-Roch theorem, we have

f∗[td
G(TIX (Ψ))ch(FΨ)] = f∗[td

G(TIX(Ψ))ch(FΨ)td(−L(Ψ)(TX))]

= f∗[td
G(TIX(Ψ))ch(FΨ) f ∗(td(−L(Ψ)(TY)))]

= f∗[td
G(TIX(Ψ))ch(FΨ)]td(−L(Ψ)(TY))

= tdG(TIY (Ψ))ch( f∗FΨ))td(−L(Ψ)(TY))

= tdG(TIY (Ψ))ch( f∗FΨ).

�

5.3 Orbifold motives

In [26], the orbifold motive of a given global quotient of a smooth projective variety by

a finite group is defined, in the category of Chow motives (with fractional Tate twists).

Using the constructions of [20], we can now treat more generally a Deligne–Mumford

stack which is the quotient of a smooth projective variety by a linear algebraic group.

We keep the notation and assumptions from the previous subsections. Let X, G and

X := [X/G] be as before. The motive ofX is defined as an object in the category DMQ
of rational mixed motives, see [34, §2.4] (the condition of being exhaustive is satisfied

since we assumed the action is linearizable).

Recall that in Definition 5.5, a class Ttw ∈ KG
0

(I2
G

(X)) = K0(I2
X

) is constructed. Just

as in Definition 5.7, we consider the image of the class ctop(Ttw) ∈ CH(I2
X

) via the

push-forward by the following proper morphism

(e1, e2, µ) : I2
X → IX × IX × IX,

which is a class (e1, e2, µ)∗ctop(Ttw) ∈ CH(IX×IX×IX). It is equivalent to a morphism

M(IX) ⊗ M(IX)→ M(IX).

By the same argument in Theorem 4.11 and Proposition 5.12, one can show that this

endows M(IX) a commutative associative algebra object structure on M(IX) and it

induces the one on CH∗orb(X). We call this algebra object the orbifold motive of X =

[X/G] and denote it by Morb(X).

In the case where X = [X/G] with G being a finite group, we recover the orbifold

Chow motive horb(X) constructed in [26], that is Morb(X) is canonically isomorphic

to ι (horb(X)) as algebra objects in DMQ, where ι : CHM
op

Q
→֒ DMQ is the fully

faithful tensor functor constructed in [60] which embeds (the opposite category of)

the category of Chow motives to the category of mixed motives.

5.4 Non-abelian localization for K-theory

In this subsection, algebraic K-theory and higher Chow groups will be considered

with complex coefficients. We summarize here the results of Edidin–Graham in [19]
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which identify the equivariant K-theory of X with a direct summand of the equivariant

K-theory of its inertia stack.

For any conjugacy class Ψ of G, let mΨ ⊂ R(G) ⊗ C be the maximal ideal of repre-

sentations whose virtual characters vanish on Ψ. If Ψ = {h} is the conjugacy class of

h, we will denote mΨ by mh. The ideal m1 is simply the augmentation one. By [19,

Propsition 3.6], there is a decomposition

KG
• (X) ⊗ C �

⊕

Ψ

KG
• (X)mΨ (5.9)

where the sum runs over the finite number of conjugacy classes Ψ such that I(Ψ) is

non-empty.

Let Z be an algebraic group acting on a scheme X (or more general, an algebraic

space). Let H be a subgroup of the center of Z consisting of semi-simple elements

which act trivially on X. There is a natural action of H on KZ
• (X) ⊗ C described as

follows.

For any Z-equivariant vector bundle E and any character χ of H, denote Eχ to be the

sub-vectorbundle of E whose section are given by

Eχ(U) := {s ∈ E(U) | h.s = χ(h)s}.

Then E =
⊕

χ
Eχ is a decomposition of E into the direct sum of H-eigenbundles. Let

Vectχ,Z(X) be the category of Z-equivariant vector bundles on X such that h acts with

eigenvalue χ(h) for any h ∈ H and let K
χ,Z
• (X) the K-theory of Vectχ,Z(X). We have

the decomposition

Vect(Z, X)
∼
−→

∏

χ

Vectχ(Z, X), E 7→ (Eχ)χ

which is obviously exact. This yields a decomposition on K-theory

KZ
n (X) ⊗ C =

⊕

χ

K
χ,Z
n (X) ⊗ C.

Given that, we define the action of H on KZ
n (X) ⊗ C by

h.E = (χ(h)−1Eχ)χ

for any h ∈ H.

When restricting to a point and to n = 0, this defines an action of H on the representa-

tion ring R(Z) so that

h.mΨ = mhΨ.

In particular, h−1.mh = m1, the augmentation ideal of R(Z).

When Z acts on X with finite stabilizers, the decomposition KZ
n (X) =

⊕

Ψ
KZ

n (X)mΨ is

obviously compatible with this H-action and we have

h−1.KZ
n (X)mh

= KZ
n (X)m1

.
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In the case Z = ZG(h) and X is Xh where h is a representative of Ψ in G, this yields

h−1.KZG(h)
n (Xh)mh

= KZG(h)
n (Xh)m1

.

By (5.1), K
ZG (h)
n (Xh) is identified with KG

n (I(Ψ)). The intersection Ψ ∩ Z decomposes

into the union of conjugacy classes in Z such that one of them is the conjugacy class

of h. Under the decomposition (5.9), the localization K
ZG (h)
n (Xh)mh

corresponds to a

summand of KG
• (I(Ψ))mΨ , which we denote by KG

• (IG(X))cΨ [19, Proposition 3.8]. The

action of h−1 is then define an isomorphism

tΨ : KG
• (I(Ψ))cΨ = KG

• (I(Ψ))m1
.

It is straightforward to check that this isomorphism is independent of the choice of h

in Ψ. These maps tΨ resemble to define an isomorphism

t :
⊕

Ψ

KG
• (I(Ψ))cΨ → KG

• (IG(X))m1
=

⊕

Ψ

KG
• (I(Ψ))m1

.

The map j := π|I(Ψ) : I(Ψ) → X is a finite l.c.i morphism (Proposition 5.2). Let NΨ
be the corresponding relative tangent bundle. Then j induces an ismorphism on the

localization of K-groups

j∗ : KG
• (I(Ψ))cΨ → KG

• (X)mΨ

satisfying

α = j∗

(

j∗α

λ−1(N∗
Ψ

)

)

for any α ∈ KG
• (X)mΨ [19, Theorem 3.3].

Definition 5.16. We define

ϕ : KG
• (X) ⊗ C→ KG

• (IG(X))m1

αΨ 7→ t

(

j∗αΨ

λ−1(N∗
Ψ

)

)

for any αΨ ∈ KG
• (X)mΨ .

Proposition 5.17. The map ϕ is an isomorphism whose inverse is ϕ−1 = j∗ ◦ t−1.

Proof. For any αΨ ∈ KG
• (X)mΨ , we have

( j∗ ◦ t−1)(ϕαΨ) = j∗

(

j∗αΨ

λ−1(N∗
Ψ

)

)

= αΨ.

Conversely, for any βΨ ∈ KG
• (IG(X))m1

,

ϕ( j∗t
−1(βΨ)) = t

(

j∗ j∗(t
−1βΨ)

λ−1(N∗(Ψ))

)

= t(t−1βΨ) = βΨ

where the second identity follows from the self-intersection formula for j [40, Theo-

rem 3.8]. �
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Definition 5.18. For α, β ∈ KG
• (X) ⊗ C, define

α ⋆T β := ϕ−1(ϕ(α) ⋆ET ϕ(β)).

Theorem 5.19. The product ⋆T on KG
• (X) ⊗ C is associative and graded commuta-

tive. Moreover, the map

ch ◦ ϕ : KG
• (X) ⊗ C→ CH∗G(IG(X), •) ⊗ C

is a ring isomorphism with respect to the product ⋆T on the left and the product ⋆cT

on the right.

Proof. By definition, the map ϕ is an algebra isomorphism with respect to the orb-

ifold products. The first statement is a direct consequence of the commutativity and

associativity of ⋆ET . The second statement follows from Theorem 5.14. �

6 Application: hyper-Kähler resolution conjectures

The idea originates from theoretic physics. Based on considerations from topological

string theory of orbifolds in [16] and [17], one expects a strong relation between the

cohomological invariants of an orbifold and those of its crepant resolution. Some first

evidences are given in [4], [5], [63], [45] on the orbifold Euler number and the orb-

ifold Hodge numbers. Later Ruan put forth a much deeper conjectural picture, among

which he has the following Cohomological Hyper-Kähler Resolution Conjecture in

[49]. We refer the reader to [50], [11], [14] for more sophisticated versions.

Conjecture 6.1 (Ruan’s Cohomological HRC). Let X be a compact complex orb-

ifold with underlying variety X being Gorenstein. If there is a crepant resolution

Y → X with Y admitting a hyper-Kähler metric, then we have an isomorphism of

graded commutative C-algebras : H∗(Y,C) ≃ H∗
orb

(X,C).

Here the right-hand side is the orbifold cohomology ring defined in [12] and [13].

Conjecture 6.1 being topological, we investigate in this section its refined counterpart

in algebraic geometry, namely Conjecture 1.3 and its stronger version Conjecture 1.4.

See Introduction for the precise statements.

Lemma 6.2. In Conjecture 1.3, (ii) and (iii) are equivalent. More generally, in Con-

jecture 1.4, (ii)+ and (iii)+ are equivalent.

Proof. The equivalence of (ii) and (iii) can be found in [26, Proof of Theorem 1.8].

We only show the equivalence of (ii)+ and (iii)+ here. By Theorem 1.2 (v), there exists

an orbifold (higher) Chern character map, which is an isomorphism of algebras from

the completion of orbifold algebraic K-theory to the orbifold higher Chow ring:

ch : KG
• (IG(X))∧ = Korb

• (X)∧
≃
−→ CH∗G(IG(X), •) = CH∗orb(X, •).

On the other hand, by Theorem 2.7, we have an isomorphism of algebras

ch : K•(Y)
≃
−→ CH∗(Y, •).
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Combining these two isomorphisms, we see the equivalence between (ii)+ and (iii)+.

�

Proposition 6.3. In Conjecture 1.4, (iv) implies (iii)+, hence also (ii)+.

Proof. The following general fact follows in a straight-forward way from the defini-

tion: let M and N be two commutative algebra objects in the category DM := DM(C)C
of mixed motives (over complex numbers) with complex coefficients, if M and N are

isomorphic as algebra objects, then we have an isomorphism of bigraded algebras

HomDM (M,C(∗)[2 ∗ −•]) ≃ HomDM (N,C(∗)[2 ∗ −•])

where C(∗)[•] is the motivic complex defining motivic cohomology with complex

coefficients. Now it suffices to apply this statement to M = Morb(X) and N = ι (h(Y)) =

M(Y), where ι : CHM
op

C
→֒ DM is the fully faithful embedding tensor functor [60].

�

Therefore, in some sense, among the various hyper-Kähler resolution conjectures, the

motivic one is the strongest and most fundamental. Invoking the series of works [26],

[24] and [25], we deduce Theorem 1.5:

Proof of Theorem 1.5. As the motivic hyper-Kähler resolution conjecture is proved

in all the cases in the statement by [26], [24] and [25] (note that isomorphic algebra

objects in CHMC are isomorphic algebra objects in DMC), Proposition 6.3 implies

that the other hyper-Kähler resolution conjectures also hold in these cases. �
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[48] Joël Riou, Algebraic K-theory, A1-homotopy and Riemann–Roch theorems, J.

Topol. 3 (2010), no. 2, 229–264.

[49] Yongbin Ruan, Stringy geometry and topology of orbifolds, Symposium in

Honor of C. H. Clemens (Salt Lake City, UT, 2000), Contemp. Math., vol. 312,

pp. 187–233. Amer. Math. Soc., Providence, RI (2002).

[50] Yongbin Ruan, The cohomology ring of crepant resolutions of orbifolds,

Gromov-Witten theory of spin curves and orbifolds, Contemp. Math., vol. 403,

pp. 117–126. Amer. Math. Soc., Providence, RI (2006).

[51] Hideyasu Sumihiro, Equivariant completion. II, J. Math. Kyoto Univ. 15 (1975),

no. 3, 573–605.

[52] Robert W. Thomason, Algebraic K-theory of group scheme actions, Algebraic

topology and algebraic K-theory (Princeton, N.J., 1983), Ann. Math. Stud., vol.

113, pp. 539–563. Princeton Univ. Press, Princeton, NJ (1987).

[53] Robert W. Thomason, Les K-groupes d’un schéma éclaté et une formule
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